41 research outputs found

    Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart

    Get PDF
    AbstractDevelopment of a functional organ requires the establishment of its proper size as well as the establishment of the relative proportions of its individual components. In the zebrafish heart, organ size and proportion depend heavily on the number of cells in each of its two major chambers, the ventricle and the atrium. Heart size and chamber proportionality are both affected in zebrafish fgf8 mutants. To determine when and how FGF signaling influences these characteristics, we examined the effect of temporally controlled pathway inhibition. During cardiac specification, reduction of FGF signaling inhibits formation of both ventricular and atrial cardiomyocytes, with a stronger impact on ventricular cells. After cardiomyocyte differentiation begins, reduction of FGF signaling can still result in a deficiency of ventricular cardiomyocytes. Consistent with two temporally distinct roles for FGF, we find that increased FGF signaling induces a cardiomyocyte surplus only before cardiac differentiation begins. Thus, FGF signaling first regulates heart size and chamber proportionality during cardiac specification and later refines ventricular proportion by regulating cell number after the onset of differentiation. Together, our data demonstrate that a single signaling pathway can act reiteratively to coordinate organ size and proportion

    Role of kif2c, A Gene Related to ALL Relapse, in Embryonic Hematopoiesis in Zebrafish

    Get PDF
    Relapse of acute lymphoblastic leukemia (ALL) is dangerous and it worsens the prognosis of patients; however, prognostic markers or therapeutic targets for ALL remain unknown. In the present study, using databases such as TARGET, GSE60926 and GSE28460, we determined that KIF2C and its binding partner, KIF18B are overexpressed in patients with relapsed ALL compared to that in patients diagnosed with ALL for the first time. As 50% of the residues are exactly the same and the signature domain of KIF2C is highly conserved between human and zebrafish, we used zebrafish embryos as a model to investigate the function of kif2c in vivo. We determined that kif2c is necessary for lymphopoiesis in zebrafish embryos. Additionally, we observed that kif2c is not related to differentiation of HSCs; however, it is important for the maintenance of HSCs as it provides survival signals to HSCs. These results imply that the ALL relapse-related gene KIF2C is linked to the survival of HSCs. In conclusion, we suggest that KIF2C can serve as a novel therapeutic target for relapsed ALL

    Mismatch-repair protein MSH6 is associated with Ku70 and regulates DNA double-strand break repair

    Get PDF
    MSH6, a key component of the MSH2–MSH6 complex, plays a fundamental role in the repair of mismatched DNA bases. Herein, we report that MSH6 is a novel Ku70-interacting protein identified by yeast two-hybrid screening. Ku70 and Ku86 are two key regulatory subunits of the DNA-dependent protein kinase, which plays an essential role in repair of DNA double-strand breaks (DSBs) through the non-homologous end-joining (NEHJ) pathway. We found that association of Ku70 with MSH6 is enhanced in response to treatment with the radiomimetic drug neocarzinostatin (NCS) or ionizing radiation (IR), a potent inducer of DSBs. Furthermore, MSH6 exhibited diffuse nuclear staining in the majority of untreated cells and forms discrete nuclear foci after NCS or IR treatment. MSH6 colocalizes with γ-H2AX at sites of DNA damage after NCS or IR treatment. Cells depleted of MSH6 accumulate high levels of persistent DSBs, as detected by formation of γ-H2AX foci and by the comet assay. Moreover, MSH6-deficient cells were also shown to exhibit impaired NHEJ, which could be rescued by MSH6 overexpression. MSH6-deficient cells were hypersensitive to NCS- or IR-induced cell death, as revealed by a clonogenic cell-survival assay. These results suggest a potential role for MSH6 in DSB repair through upregulation of NHEJ by association with Ku70

    Long Non-Coding RNA KCNQ1OT1 Regulates Protein Kinase CK2 Via miR-760 in Senescence and Calorie Restriction

    No full text
    Long non-coding RNAs (lncRNAs) play important biological roles. Here, the roles of the lncRNA KCNQ1OT1 in cellular senescence and calorie restriction were determined. KCNQ1OT1 knockdown mediated various senescence markers (increased senescence-associated β-galactosidase staining, the p53-p21Cip1/WAF1 pathway, H3K9 trimethylation, and expression of the senescence-associated secretory phenotype) and reactive oxygen species generation via CK2α downregulation in human cancer HCT116 and MCF-7 cells. Additionally, KCNQ1OT1 was downregulated during replicative senescence, and its silencing induced senescence in human lung fibroblast IMR-90 cells. Additionally, an miR-760 mimic suppressed KCNQ1OT1-mediated CK2α upregulation, indicating that KCNQ1OT1 upregulated CK2α by sponging miR-760. Finally, the KCNQ1OT1–miR-760 axis was involved in both lipopolysaccharide-mediated CK2α reduction and calorie restriction (CR)-mediated CK2α induction in these cells. Therefore, for the first time, this study demonstrates that the KCNQ1OT1–miR-760–CK2α pathway plays essential roles in senescence and CR, thereby suggesting that KCNQ1OT1 is a novel therapeutic target for an alternative treatment that mimics the effects of anti-aging and CR

    Long Non-Coding RNA <i>KCNQ1OT1</i> Regulates Protein Kinase CK2 Via miR-760 in Senescence and Calorie Restriction

    No full text
    Long non-coding RNAs (lncRNAs) play important biological roles. Here, the roles of the lncRNA KCNQ1OT1 in cellular senescence and calorie restriction were determined. KCNQ1OT1 knockdown mediated various senescence markers (increased senescence-associated β-galactosidase staining, the p53-p21Cip1/WAF1 pathway, H3K9 trimethylation, and expression of the senescence-associated secretory phenotype) and reactive oxygen species generation via CK2α downregulation in human cancer HCT116 and MCF-7 cells. Additionally, KCNQ1OT1 was downregulated during replicative senescence, and its silencing induced senescence in human lung fibroblast IMR-90 cells. Additionally, an miR-760 mimic suppressed KCNQ1OT1-mediated CK2α upregulation, indicating that KCNQ1OT1 upregulated CK2α by sponging miR-760. Finally, the KCNQ1OT1–miR-760 axis was involved in both lipopolysaccharide-mediated CK2α reduction and calorie restriction (CR)-mediated CK2α induction in these cells. Therefore, for the first time, this study demonstrates that the KCNQ1OT1–miR-760–CK2α pathway plays essential roles in senescence and CR, thereby suggesting that KCNQ1OT1 is a novel therapeutic target for an alternative treatment that mimics the effects of anti-aging and CR

    High-throughput zebrafish screening using optical coherence tomography

    No full text

    A novel method to determine five elastic constants of a transversely isotropic rock using a single-orientation core by strip load test and strain inversion

    No full text
    This study proposes a novel method to determine the five elastic constants from a single-orientation core of a transversely isotropic rock using strip loading and strain inversion. The proposed method can be performed under two test conditions: 1) strip load test and strain inversion (single strip load method) and 2) strip load test combined with Brazilian test and strain inversion (strip load and Brazilian method). Strain inversion was carried out by finite element modeling to determine the elastic constants by minimizing the difference between the measured and numerically modeled strains. The method was validated by numerical and laboratory experiments in comparison with the conventional method that uses two uniaxial compression tests with multiple coring directions. In the numerical validation, elastic constants were estimated with high accuracy for cores with high coring angles by the single strip load method. The strip load and Brazilian method accurately determined the five elastic constants for all ranges of coring angles. Validation using Asan gneiss showed that both the approaches of the suggested method can determine the five elastic constants using a single-orientation core. Most of the experimental results were within the range of variations often observed in rock mechanics experiments. The method combining uniaxial compression and Brazilian tests was additionally proposed even though it required an empirical relation of the second shear modulus for horizontally and vertically layered cores. Further, the experimental results were discussed in terms of heterogeneity, nonlinear stress-strain relationship, and Saint-Venant empirical relation. The existing method using a single uniaxial compression test involving the Saint-Venant empirical relation was also tested, showing limited reliability for low coring angles. The suggested methods using a single-orientation core will contribute to a convenient determination of elastic constants of transversely isotropic rocks.N

    Catechol as a New Electron Hot Spot of Carbon Nitride

    No full text
    Graphitic carbon nitride (CNx) is a promising photocatalyst with visible-light sensitivity, attractive band-edge positions, tunable electronic structure, and eco-friendliness. However, their applications are limited by a low catalytic activity due to inefficient charge separation and insufficient visiblelight absorption. Here we show a new method to generate the electron polarization of CNx toward the edge via the chemical conjugation of catechol to CNx for enhanced photochemical activity. The electron-attracting property of catechol/quinone pairs induces the accumulation of photoexcited electrons at the edge of conjugated catechol-CNx hybrid nanostructure (Cat-CNx), , serving as an electron hot spot, as demonstrated by positive open-circuit photovoltage, which increases electron transfer through the conjugated catechol while suppressing charge recombination in the CNx. The catechol conjugation also widens the photoactive spectrum via the larger range delocalization of π-electrons. Accordingly, Cat-CNx reveals a 6.3 higher reductive photocurrent density than CNx. Gold ion reduction dramatically increased due to the enhanced electron transfer activity of Cat-CNx in cooperation with the inherent hydrophilicity and metal chelating property of catechols. Cat-CNx exhibits a 4.3 higher maximum adsorption capacity for gold ions under simulated sun light illumination compared to CNx. This work suggests that the post-modification of CNx’s π-conjugated system is a promising route to handle varied shortcomings and broaden availability of CNx

    Ras controls melanocyte expansion during zebrafish fin stripe regeneration

    No full text
    Regenerative medicine for complex tissues like limbs will require the provision or activation of precursors for different cell types, in the correct number, and with the appropriate instructions. These strategies can be guided by what is learned from spectacular events of natural limb or fin regeneration in urodele amphibians and teleost fish. Following zebrafish fin amputation, melanocyte stripes faithfully regenerate in tandem with complex fin structures. Distinct populations of melanocyte precursors emerge and differentiate to pigment regenerating fins, yet the regulation of their proliferation and patterning is incompletely understood. Here, we found that transgenic increases in active Ras dose-dependently hyperpigmented regenerating zebrafish fins. Lineage tracing and marker analysis indicated that increases in active Ras stimulated the in situ amplification of undifferentiated melanocyte precursors expressing mitfa and kita. Active Ras also hyperpigmented early fin regenerates of kita mutants, which are normally devoid of primary regeneration melanocytes, suppressing defects in precursor function and survival. By contrast, this protocol had no noticeable impact on pigmentation by secondary regulatory melanocyte precursors in late-stage kita regenerates. Our results provide evidence that Ras activity levels control the repopulation and expansion of adult melanocyte precursors after tissue loss, enabling the recovery of patterned melanocyte stripes during zebrafish appendage regeneration
    corecore